Monday 21 August 2017

Exempel Glidande-Medelvärde Modell


Flyttande medelvärde I det här exemplet lär du dig hur du beräknar glidande medelvärdet för en tidsreaktor i Excel. Ett glidande medel används för att jämna ut oegentligheter (toppar och dalar) för att enkelt kunna känna igen trender. 1. Låt oss först titta på våra tidsserier. 2. Klicka på Dataanalys på fliken Data. Obs! Det går inte att hitta knappen Data Analysis Klicka här för att ladda verktyget Analysis ToolPak. 3. Välj Flytta medelvärde och klicka på OK. 4. Klicka i rutan Inmatningsområde och välj intervallet B2: M2. 5. Klicka i rutan Intervall och skriv 6. 6. Klicka i rutan Utmatningsområde och välj cell B3. 8. Skriv en graf över dessa värden. Förklaring: Eftersom vi ställer intervallet till 6 är det rörliga genomsnittet genomsnittet för de föregående 5 datapunkterna och den aktuella datapunkten. Som ett resultat utjämnas toppar och dalar. Diagrammet visar en ökande trend. Excel kan inte beräkna det rörliga genomsnittet för de första 5 datapunkterna eftersom det inte finns tillräckligt med tidigare datapunkter. 9. Upprepa steg 2 till 8 för intervall 2 och intervall 4. Slutsats: Ju större intervall desto mer topparna och dalarna utjämnas. Ju mindre intervallet desto närmare de rörliga medelvärdena är de faktiska datapunkterna. Vågat Flyttmedelvärde: Grunderna Under åren har tekniker hittat två problem med det enkla glidande medlet. Det första problemet ligger i tidsramen för glidande medelvärdet (MA). De flesta tekniska analytiker tror att prisåtgärder. det öppnande eller stängande aktiekurset räcker inte för att bero på att förutsäga köp - eller försäljningssignaler för MAs crossover-åtgärden korrekt. För att lösa detta problem, tilldelar analytiker nu mer vikt till de senaste prisuppgifterna med hjälp av det exponentiellt jämnaste glidande genomsnittet (EMA). (Läs mer om att utforska exponentiellt vägda rörliga medelvärdet.) Ett exempel Till exempel, med en 10-dagars MA, skulle en analytiker ta slutkursen för den 10: e dagen och multiplicera detta nummer med 10, den nionde dagen med nio, den åttonde dag med åtta och så vidare till den första av MA. Så snart summan har bestämts, fördelar analytikern sedan numret genom tillsats av multiplikatorerna. Om du lägger till multiplikatorerna i 10-dagars MA-exemplet är numret 55. Denna indikator kallas det linjärt viktade glidande medlet. (För relaterad läsning, kolla in Enkla rörliga genomsnittsvärden. Utveckla tendenser.) Många tekniker är fasta troende i det exponentiellt jämnaste glidande genomsnittet (EMA). Denna indikator har förklarats på så många sätt att det både förvirrar studenter och investerare. Kanske kommer den bästa förklaringen från John J. Murphys tekniska analys av finansmarknaderna (publicerad av New York Institute of Finance, 1999). Det exponentiellt jämnaste glidande genomsnittet adresserar båda problemen i samband med det enkla glidande medlet. För det första tilldelar det exponentiellt jämnde medlet en större vikt till de senaste data. Därför är det ett viktat glidande medelvärde. Men medan det tilldelar mindre betydelse för tidigare prisdata, ingår det i beräkningen av alla data i instrumentets livstid. Dessutom kan användaren justera viktningen för att ge större eller mindre vikt till det senaste dagspriset, vilket läggs till i procent av värdet för tidigare dagar. Summan av båda procentvärdena lägger till 100. Till exempel kan det sista dagspriset tilldelas en vikt av 10 (.10), vilket läggs till föregående dagsvikt på 90 (.90). Detta ger den sista dagen 10 av totalvikten. Detta skulle motsvara ett 20-dagarsmedelvärde genom att ge priset för sista dag ett mindre värde av 5 (.05). Figur 1: Exponentiellt slät Flyttande medelvärde Ovanstående diagram visar Nasdaq Composite Index från den första veckan i augusti 2000 till 1 juni 2001. Som du tydligt kan se, EMA, som i detta fall använder slutkursdata över en nio dagars period, har bestämda säljsignaler den 8 september (markerad med en svart nedåtpil). Det var den dag då indexet bröt sig under 4 000-nivån. Den andra svarta pilen visar ett annat ben som teknikerna faktiskt förväntade sig. Nasdaq kunde inte generera tillräckligt mycket volym och intresse från detaljhandeln för att bryta 3 000 mark. Därefter dyker du ner igen till botten ut vid 1619.58 den 4 april. Upptrenden av 12 april markeras med en pil. Här stängde indexet 1961.46, och tekniker började se att institutionella fondförvaltare började hämta några fynd som Cisco, Microsoft och några av de energirelaterade frågorna. (Läs våra relaterade artiklar: Flytta genomsnittliga kuvert: Raffinera ett populärt handelsverktyg och flytta genomsnittlig studs.) Beta är ett mått på volatiliteten eller systematisk risk för en säkerhet eller en portfölj i jämförelse med marknaden som helhet. En typ av skatt som tas ut på kapitalvinster som uppkommit av individer och företag. Realisationsvinster är vinsten som en investerare. En order att köpa en säkerhet till eller under ett angivet pris. En köpgränsorder tillåter näringsidkare och investerare att specificera. En IRS-regel (Internal Revenue Service) som tillåter utbetalningar från ett IRA-konto på ett strafffritt sätt. Regeln kräver det. Den första försäljningen av lager av ett privat företag till allmänheten. IPOs utfärdas ofta av mindre, yngre företag som söker. DebtEquity Ratio är skuldkvot som används för att mäta en företags039s ekonomiska hävstångseffekt eller en skuldkvot som används för att mäta en individ.8.4 Flytta genomsnittsmodeller I stället för att använda tidigare värden för prognosvariabeln i en regression använder en rörlig genomsnittsmodell tidigare prognosfel i en regression - liknande modell. y c et theta e theta e dots theta e, där et är vitt brus. Vi hänvisar till detta som en MA (q) modell. Naturligtvis observerar vi inte värdena på et, så det är inte riktigt regression i vanligt bemärkande. Observera att varje värde av yt kan betraktas som ett viktat glidande medelvärde av de senaste prognosfelen. Rörliga genomsnittsmodeller ska emellertid inte förväxlas med glidande medelutjämning som vi diskuterade i kapitel 6. En rörlig genomsnittsmodell används för att prognosera framtida värden medan den genomsnittliga utjämningen används för att uppskatta trendvärdet för tidigare värden. Figur 8.6: Två exempel på data från rörliga genomsnittsmodeller med olika parametrar. Vänster: MA (1) med y t 20e t 0.8e t-1. Höger: MA (2) med y t e t-e t-1 0.8e t-2. I båda fallen distribueras e t normalt vitt brus med medel noll och varians en. Figur 8.6 visar några data från en MA (1) modell och en MA (2) modell. Ändring av parametrarna theta1, prickar, thetaq resulterar i olika tidsseriemönster. Liksom med autoregressiva modeller ändrar variansen av felet termen en bara seriens skala, inte mönstren. Det är möjligt att skriva en stationär AR (p) modell som en MA (infty) modell. Med hjälp av upprepad substitution kan vi till exempel visa detta för en AR (1) - modell: begin yt amp phy1y et amp phi1 (phi1y e) et amp phy12y phi1e et amp phi13y phi12e phi1e et amptext end Tillhandahållet -1 lt phi1 lt 1, värdet av phi1k blir mindre eftersom k blir större. Så småningom uppnår vi yt och phi1 phi12 e phi13 e cdots, en MA (infty) - process. Det omvända resultatet hålls om vi lägger några begränsningar på MA parametrarna. Då kallas MA-modellen inverterbar. Det vill säga att vi kan skriva någon inverterbar MA (q) process som en AR (infty) - process. Omvändbara modeller är inte bara för att vi ska kunna konvertera från MA-modeller till AR-modeller. De har också vissa matematiska egenskaper som gör dem enklare att använda i praktiken. Invertibilitetsbegränsningarna liknar stationaritetsbegränsningarna. För en MA (1) modell: -1lttheta1lt1. För en MA (2) modell: -1lttheta2lt1, theta2theta1 gt-1, theta1-teteta1 1. Mer komplicerade förhållanden håller för qge3. Återigen kommer R att ta hand om dessa hinder vid beräkning av modellerna.2.1 Flytta genomsnittsmodeller (MA-modeller) Tidsseriemodeller som kallas ARIMA-modeller kan innefatta autoregressiva termer och eller rörliga genomsnittsvillkor. I vecka 1 lärde vi oss en autoregressiv term i en tidsseriemodell för variabeln x t är ett fördröjt värde av x t. Till exempel är en lag 1-autoregressiv term x t-1 (multiplicerad med en koefficient). Denna lektion definierar glidande medelvärden. En glidande medelfrist i en tidsseriemodell är ett tidigare fel (multiplicerat med en koefficient). Låt (wt overset N (0, sigma2w)), vilket betyder att wt är identiskt oberoende fördelat, var och en med en normal fördelning med medelvärde 0 och samma varians. Den första ordningens rörliga genomsnittsmodell, betecknad med MA (1) är (xt mu wt theta1w) Den andra ordens rörliga genomsnittsmodellen, betecknad med MA (2) är (xt mu wt theta1w theta2w) , betecknad med MA (q) är (xt mu wt theta1w theta2w prickar thetaqw) Anm. Många läroböcker och programvara definierar modellen med negativa tecken före villkoren. Detta ändrar inte de allmänna teoretiska egenskaperna hos modellen, även om den vrider de algebraiska tecknen på uppskattade koefficientvärden och (unsquared) termer i formler för ACF och variationer. Du måste kontrollera din programvara för att kontrollera om negativa eller positiva tecken har använts för att korrekt beräkna den beräknade modellen. R använder positiva tecken i sin underliggande modell, som vi gör här. Teoretiska egenskaper hos en tidsserie med en MA (1) modell Observera att det enda nonzero-värdet i teoretisk ACF är för lag 1. Alla andra autokorrelationer är 0. Således är ett prov ACF med en signifikant autokorrelation endast vid lag 1 en indikator på en möjlig MA (1) modell. För intresserade studenter är bevis på dessa egenskaper en bilaga till denna handout. Exempel 1 Antag att en MA (1) modell är x t10 w t, 7 w t-1. var (överskridande N (0,1)). Således är koefficienten 1 0,7. Den teoretiska ACF ges av En plot av denna ACF följer. Det visade diagrammet är den teoretiska ACF för en MA (1) med 1 0,7. I praktiken ger ett prov vanligen vanligtvis ett så tydligt mönster. Med hjälp av R simulerade vi n 100 provvärden med hjälp av modellen x t 10 w t .7 w t-1 där vikt N (0,1). För denna simulering följer en tidsserieplot av provdata. Vi kan inte berätta mycket från denna plot. Provet ACF för den simulerade data följer. Vi ser en spik vid lag 1 följt av allmänt icke-signifikanta värden för lags överst. Observera att provet ACF inte stämmer överens med det teoretiska mönstret för den underliggande MA (1), vilket är att alla autokorrelationer för lags över 1 kommer att vara 0 . Ett annat prov skulle ha ett något annorlunda prov ACF som visas nedan, men skulle troligen ha samma breda funktioner. Terapeutiska egenskaper hos en tids serie med en MA (2) modell För MA (2) modellen är teoretiska egenskaper följande: Observera att de enda nonzero-värdena i teoretisk ACF är för lags 1 och 2. Autokorrelationer för högre lags är 0 . En ACF med signifikanta autokorrelationer vid lags 1 och 2, men icke-signifikanta autokorrelationer för högre lags indikerar en möjlig MA (2) modell. iid N (0,1). Koefficienterna är 1 0,5 och 2 0,3. Eftersom det här är en MA (2), kommer den teoretiska ACF endast att ha nonzero-värden endast vid lags 1 och 2. Värdena för de två icke-oberoende autokorrelationerna är A-plot av den teoretiska ACF följer. Såsom nästan alltid är fallet kommer provdata inte att verka så perfekt som teori. Vi simulerade n 150 provvärden för modellen x t 10 w t .5 w t-1 .3 w t-2. var vet N (0,1). Tidsserierna av data följer. Som med tidsserien för MA (1) provdata kan du inte berätta mycket för det. Provet ACF för den simulerade data följer. Mönstret är typiskt för situationer där en MA (2) modell kan vara användbar. Det finns två statistiskt signifikanta spikar vid lags 1 och 2 följt av icke-signifikanta värden för andra lags. Observera att provet ACF på grund av provtagningsfel inte exakt matchade det teoretiska mönstret. ACF för General MA (q) Modeller En egenskap hos MA (q) modeller är generellt att det finns icke-oberoende autokorrelationer för de första q-lagsna och autokorrelationerna 0 för alla lags gt q. Icke-unikhet av samband mellan värden på 1 och (rho1) i MA (1) Modell. I MA (1) modellen, för något värde av 1. den ömsesidiga 1 1 ger samma värde. Använd exempelvis 0,5 för 1. och använd sedan 1 (0,5) 2 för 1. Du får (rho1) 0,4 i båda fallen. För att tillfredsställa en teoretisk restriktion kallad invertibility. vi begränsar MA (1) - modellerna till att ha värden med absolutvärdet mindre än 1. I exemplet just givet är 1 0,5 ett tillåtet parametervärde, medan 1 10,5 2 inte kommer att. Inverterbarhet av MA-modeller En MA-modell sägs vara omvändbar om den är algebraiskt ekvivalent med en konvergerande oändlig ordning AR-modell. Med konvergeringen menar vi att AR-koefficienterna minskar till 0 när vi flyttar tillbaka i tiden. Omvändbarhet är en begränsning programmerad i tidsserierprogramvara som används för att uppskatta koefficienterna för modeller med MA-termer. Det är inte något vi söker efter i dataanalysen. Ytterligare information om invertibilitetsbegränsningen för MA (1) - modeller ges i bilagan. Avancerad teorinotation. För en MA (q) modell med en specificerad ACF finns det bara en inverterbar modell. Det nödvändiga villkoret för invertibilitet är att koefficienterna har värden så att ekvationen 1- 1 y-. - q y q 0 har lösningar för y som faller utanför enhetens cirkel. R-kod för exemplen I exempel 1 ritade vi den teoretiska ACF av modellen x t10 wt. 7w t-1. och sedan simulerade n 150 värden från denna modell och plottade provtidsserierna och provet ACF för de simulerade data. R-kommandona användes för att plotta den teoretiska ACF: acfma1ARMAacf (mac (0.7), lag. max10) 10 satser av ACF för MA (1) med theta1 0,7 lags0: 10 skapar en variabel som heter lags som sträcker sig från 0 till 10. plot (lags, acfma1, xlimc (1,10), ylabr, typh, huvud ACF för MA (1) med theta1 0,7) abline (h0) adderar en horisontell axel till plottet Det första kommandot bestämmer ACF och lagrar det i ett objekt namnet acfma1 (vårt val av namn). Plot-kommandot (3: e kommandot) tomter jämförs med ACF-värdena för lags 1 till 10. ylab-parametern markerar y-axeln och huvudparametern lägger en titel på plotten. För att se de numeriska värdena för ACF använder du bara kommandot acfma1. Simuleringen och diagrammen gjordes med följande kommandon. xcarima. sim (n150, lista (mac (0.7))) Simulerar n 150 värden från MA (1) xxc10 lägger till 10 för att göra medelvärdet 10. Simulering standardvärden betyder 0. plot (x, typeb, mainSimulated MA (1) data) acf (x, xlimc (1,10), mainACF för simulerad provdata) I exempel 2 ritade vi teoretisk ACF av modellen xt 10 wt5 w t-1, 3 w t-2. och sedan simulerade n 150 värden från denna modell och plottade provtidsserierna och provet ACF för de simulerade data. De R-kommandon som användes var acfma2ARMAacf (mac (0,5,0,3), lag. max10) acfma2 lags0: 10 plot (lags, acfma2, xlimc (1,10), ylabr, typh, huvud ACF för MA (2) med theta1 0,5, theta20.3) abline (h0) xcarima. sim (n150, lista (mac (0,5, 0,3)) xxc10 plot (x, typeb, huvudsimulerad MA (2) serie) acf (x, xlimc (1,10) mainACF för simulerade MA (2) data) Bilaga: Bevis för egenskaper hos MA (1) För intresserade studenter, här är bevis för teoretiska egenskaper för MA (1) modellen. Varians: (text (xt) text (mu wt theta1 w) 0 text (wt) text (theta1w) sigma2w theta21sigma2w (1theta21) sigma2w) När h 1, föregående uttryck 1 w 2. För varje h 2, föregående uttryck 0 . Orsaken är att, per definition av vägtons oberoende. E (w k w j) 0 för någon k j. Vidare, eftersom wt har medelvärdet 0, E (w jw j) E (wj 2) w 2. För en tidsserie, tillämpa detta resultat för att få ACF ges ovan. En inverterbar MA-modell är en som kan skrivas som en oändlig ordning AR-modell som konvergerar så att AR-koefficienterna konvergerar till 0 när vi rör sig oändligt tillbaka i tiden. Visa väl omvändbarhet för MA (1) modellen. Vi ersätter sedan förhållandet (2) för w t-1 i ekvation (1) (3) (zt wt theta1 (z-tetww) wt theta1z-tet2w) Vid tid t-2. ekvationen (2) blir vi då ersättningsförhållande (4) för w t-2 i ekvation (3) (zt wt theta1z-teteta21w wtta1z-teteta21 (z-tetww) wt theta1z-theta12z theta31w) Om vi ​​skulle fortsätta oändligt) skulle vi få oändlig ordning AR-modellen (zt wt theta1z-theta21z theta31z-tetra41z punkter) Observera dock att om koefficienterna som multiplicerar lagren av z ökar (oändligt) i storlek när vi flyttar tillbaka i tid. För att förhindra detta behöver vi 1 lt1. Detta är förutsättningen för en inverterbar MA (1) modell. Oändlig ordning MA-modell I vecka 3 ser du att en AR (1) - modell kan konverteras till en oändlig ordning MA-modell: (xt - mu wt phi1w phi21w prickar phik1 w dots sum phij1w) Denna summering av tidigare vita ljudvillkor är känd som kausalrepresentation av en AR (1). Med andra ord är x t en speciell typ av MA med ett oändligt antal termer som går tillbaka i tiden. Detta kallas en oändlig ordning MA eller MA (). En ändlig ordning MA är en oändlig ordning AR och någon ändlös ordning AR är en oändlig ordning MA. Minns i vecka 1 noterade vi att ett krav på en stationär AR (1) är att 1 lt1. Låter beräkna Var (x t) med hjälp av kausalrepresentationen. Det här sista steget använder ett grundläggande faktum om geometriska serier som kräver (phi1lt1) annars skiljer serien. Navigering

No comments:

Post a Comment